The cost of air compressor leaks can be significant for any processing facility. Not only is compressed air wasted, but the energy bills and toll on the equipment can be expensive. Leaks trigger a drop in system pressure, preventing air tools from working and impacting production. Additionally, leaks will cause an air compressor to cycle more regularly, incurring more maintenance and potential unplanned downtime.
This is why Freddie Coertze, National IoT Business Manager at ifm Australia, says the modern plant needs predictive maintenance tools to get the insights required to protect assets and prevent waste.
“Why does the modern plant need data science tools to prevent compressed air waste? Because a compressor doesn’t run on load all the time,” explains Freddie. “It runs on variable load depending on how much the factory or processing facility needs. Data needs to be collected from the equipment and analysed to understand how the asset performs. However, this is where there is a difference between solutions available.”
The ifm moneo IoT platform has been designed to provide real-time insights into an air compressor. That usually comes with employing data science experts, but ifm utilises artificial intelligence (AI) and other in-built smarts.
“This is an AI-assisted, self-service predictive maintenance tool,” says Freddie. “It makes it very easy to harvest the data from a complex system. That puts the power back into the hands of the business so they can achieve better productivity at their plant.”
To elaborate on his point, Freddie refers to a real example of where moneo has been used to monitor and improve an air compressor. Firstly, he describes the set-up.
“All that is required for this set-up is the moneo platform, which comes in the form of an IPC unit that we provide. This is very easy to install and doesn’t require going via an IT network to install device software,” he explains. “This links to an IO-Link master, which collects data from the sensor devices. Applying this air compressor example, we have flow meters, humidity, temperature, pressure and vibration sensors, and a current transmitter to see how hard the compressor is working.”
How the moneo IoT platform can support business decisions
According to Freddie, the moneo software will draw on historical data to create set parameters and real-time data for analysis. It does this through the use of AI algorithms and machine learning.
“In the case where we monitored an air compressor at a site, the moneo platform determined that the compressor was running at a loss. It was consuming more energy than it should. This was especially evident when the plant was shut for the weekend,” says Freddie. “Because the solution gives a holistic picture of the whole asset, we could predict a future failure. This was easily remedied without any major consequences.”
While an air compressor is a strong example of where efficiency gains can be easily obtained, Freddie stresses that the moneo data science tool will provide greater predictability of all assets in a plant. Notably, he notes that the moneo platform is agnostic and can be integrated with existing systems.
“To protect, you need to predict. The difference is that now we can harness the benefits of AI to make this a simpler process for any manufacturing or processing facility,” he summarises. “With moneo, we provide a pre-packaged self-service kit that you can expand on, depending on your changing requirements. Significantly, this platform is a middleware that can sit between your sensor level and a higher-end system such as SCADA. And with the in-built AI and automated machine learning, you don’t need to involve a data scientist to get real-time, actionable insights.”
Readers can visit the webpage to learn more about the moneo platform or access a free trial.
Related Articles:
- Creating circular solutions for utilities: the smart way
- Digital neighbourhood brings financial savings
- The Internet of Water: a new era