A sustainable hydrogel formulation for wound dressing prevents wound expansion with its low-adhesion and low-swelling properties and heals wounds.
Acting as the primary interface between the internal and the external world, the skin is the largest and most important organ of the human body. It is frequently exposed to physical injuries or wounds, including cuts, scrapes, scratches, infections, and ulcers.
Unfortunately, as one ages, the skin becomes more frail and less capable of healing itself without help. With many countries experiencing a rapid rise in the aging population, the demand for treating such skin wounds has created a greater need for accessible and effective wound care products.
Sustainable hydrogel
Over the past few decades, hydrogels have received a lot of attention for treating skin wounds. When applied over a lesion, these special gels can promote healing by absorbing discharged fluids (exudates) and keeping the wound protected, well-hydrated, and oxygenated.
However, most developed hydrogels give skin tissue adhesive properties to follow skin movement. Since these hydrogels are sticky and adhere to the skin and wound site, they stretch and expand the wound once they swell up after absorbing exudates. This causes the user pain and puts them at a higher risk of bacterial infection due to the wound area expansion. Therefore, to create hydrogels that can effectively treat wounds without interfering with the wound-healing process, it is necessary to experiment with preparing hydrogels based on new ideas while utilizing existing material properties.
Against this backdrop, researchers from the Tokyo University of Science (TUS), Japan, have proposed an innovative and high-value-added medical material for treating skin wounds. Their recent study published in the International Journal of Biological Macromolecules reported that they developed a novel, low-cost hydrogel using a component found in seaweed, achieving physical properties utterly different from those of conventional hydrogels.
Hydrogel study
The study, made available online on 8 November 2023, will be published in Volume 254, Part 3 of the journal in January 2024. It was led by Mr. Ryota Teshima, a Master’s student at TUS. Assistant Professor Shigehito Osawa, Ms. Miki Yoshikawa, Associate Professor Yayoi Kawano, Professor Hidenori Otsuka, and Professor Takehisa Hanawa, all from different faculties and departments at TUS, were also a part of this study.
The method of preparation of the proposed hydrogel is relatively straightforward. It was made using alginate, calcium carbonate, and carbonated water. Alginate is a biocompatible substance that can be extracted from beach-cast seaweed. Most importantly, it does not adhere strongly to cells or skin tissues. Thanks to the unique structure formed by alginate and calcium ions, in addition to the protective effect of the CO2 in carbonated water against acidification, the resulting hydrogel not only exhibited ideal pH and moisture conditions for wound recovery but also demonstrated significantly lower adhesion and swelling, compared to other commercial hydrogel wound dressings.
Effectiveness of sustainable hydrogel
The researchers tested the effectiveness of their new hydrogel using cell cultures and a mouse model, both of which yielded excellent results.
“Through animal experiments, we demonstrated that our hydrogel has a high therapeutic effect and at the same time can suppress the temporary expansion of the wound area caused by conventional clinical preparations,” remarks Teshima. “This proves our initial hypothesis that gels with low skin adhesion and low-swelling properties are excellent as wound dressing materials, which is the complete opposite of conventional wisdom.”
It is worth noting that alginate can be extracted from beach-stranded seaweed, a renewable resource often regarded as a coastal waste material. Since the proposed hydrogel is inexpensive and biodegradable, this development marks an essential step towards future progress in sustainable medicine.
“Medical materials still lack a sustainability-oriented perspective, and we believe this research will serve as a benchmark for the design of future medical materials and lead to sustainable and low-cost wound care,” says Teshima. “Moreover, our findings can help clarify issues with hydrogel formulations currently in clinical use and provide new design guidelines for next-generation wound treatment gels.”
Related Articles:
- New perspectives on water management for sustainable cities
- Converting PFAS and forever chemicals into a valuable resource
- Can deep learning support predictive dam management?